

## Factors and Outcomes Associated with Blood Product Transfusion Ratios During Massive Postpartum Hemorrhage



Michael J Furdyna, MD; Samuel Justice, PhD; Mahyar Heydarpour, PhD; Shubhangi Singh, MBBS; John J Kowalczyk, MD; Sharon C Reale, MD

Brigham and Women's Hospital, Boston, MA

# Background

There is limited consensus on optimal transfusion ratios in postpartum hemorrhage as bleeding and resuscitation escalate

Large-volume transfusion strategies may not account for the unique coagulation profiles in the peripartum period

What drives transfusion ratios in massive obstetric hemorrhage?

Can variation in transfusion ratios impact outcomes?



# **Study Aims**

### **Primary Aim**

Identify the patient, case, and institutional factors associated variations in FFP:PRBC transfusion ratios

### Secondary Aim

Estimate the association between FFP:PRBC transfusion ratios and maternal clinical outcomes





"Overbalanced"

<del>1.34 ≤ FFP:PRBC</del>

## Statistical Methods

Transfusion Ratios (Binary): GLMM Transfusion Ratios (Continuous): Log<sub>10</sub>-transformed LMM Clinical Outcomes (Binary + Continuous): GLMM / LMM Coagulation Profile: Descriptive analysis

GLMM: Generalized Linear Mixed Model LMM: Linear Mixed Model



## Factors and Outcomes Associated with Blood Product Transfusion Ratios During Massive Postpartum Hemorrhage



Michael J Furdyna, MD; Samuel Justice, PhD; Mahyar Heydarpour, PhD; Shubhangi Singh, MBBS; John J Kowalczyk, MD; Sharon C Reale, MD

Brigham and Women's Hospital, Boston, MA

## Results

#### Factors Associated with FFP:PRBC Transfusion Ratios

|                                   | Underbalanced vs Balanced    |         | Continuous Ratio         |         |
|-----------------------------------|------------------------------|---------|--------------------------|---------|
| Characteristics                   | Adjusted Odds Ratio (95% CI) | P-Value | B-coefficient (95% CI)   | P-Value |
| BMI                               | 1.02 (0.997, 1.03)           | 0.101   | -0.01 (-0.02, 0.01)      | 0.463   |
| ASA Physical Status (Ref: I/II)   |                              |         |                          |         |
| ш                                 | 1.02 (0.76, 1.38)            | 0.881   | 0.33 (0.07, 0.58)        | 0.013   |
| IV                                | 1.77 (1.15, 2.73)            | 0.01    | 0.91 (0.53, 1.29)        | <0.001  |
| Estimated Units of RBCS           | 1.01 (0.98, 1.04)            | 0.405   | 0.06 (0.03, 0.083) <     |         |
| Cryoprecipitate/PRBC Ratio        | 1.24 (1.13, 1.36)            | <0.001  | 0.27 (0.19, 0.35)        | <0.001  |
| Method of Delivery (Ref: Vaginal) |                              |         |                          |         |
| Labor to Cesarean Conversion      | 1.72 (1.06, 2.80)            | 0.028   | 0.50 (0.10, 0.90)        | 0.014   |
| Scheduled Cesarean Delivery       | 1.26 (0.70, 2.30)            | 0.441   | 0.22 (-0.28, 0.71)       | 0.386   |
| Comorbidities                     |                              |         |                          |         |
| Preterm Delivery                  | 0.76 (0.52, 1.12)            | 0.169   | -0.36 (-0.69, -0.03)     | 0.031   |
| Multiple Gestation                | 1.29 (0.77, 2.15)            | 0.337   | 0.15 (-0.31, 0.60) 0.52  |         |
| Preeclampsia                      | 1.02 (0.73, 1.43)            | 0.907   | -0.06 (-0.36, 0.23) 0.68 |         |
| Chorioamnionitis                  | 1.07 (0.70, 1.66)            | 0.748   | 0.14 (-0.23, 0.51)       | 0.473   |
| Abruption                         | 1.25 (0.82, 1.90)            | 0.301   | 0.19 (-0.18, 0.56)       | 0.308   |
| Placenta Previa and PAS           | 1.42 (1.04, 1.94)            | 0.026   | 0.75 (0.48, 1.02)        | <0.001  |
| Fibrinogen Concentrate Used       | 1.51 (0.75, 3.05)            | 0.244   | 1.14 (0.56, 1.73)        | <0.001  |
| Viscoelastic Testing Used         | 0.55 (0.29, 1.05)            | 0.072   | -0.65 (-1.19, -0.12)     | 0.017   |
| Academic Affiliation              | 1.18 (0.50, 2.79)            | 0.701   | -0.07 (-1.19, 1.04) 0.9  |         |
| Annual Delivery Volume            | 1.15 (0.94, 1.41)            | 0.171   | 0.26 (-0.04, 0.55)       | 0.093   |
| Cell-Salvage Used                 | 0.68 (0.46, 0.997)           | 0.0484  | -0.53 (-0.86, -0.19)     | 0.002   |

### **FFP:PRBC Transfusion and Clinical Outcomes**

|                                    | Underbalanced vs Balanced    |         | Continuous Ratio             |         |  |
|------------------------------------|------------------------------|---------|------------------------------|---------|--|
|                                    | Adjusted Odds Ratio (95% CI) | P-Value | Adjusted Odds Ratio (95% CI) | P-Value |  |
| Length of Stay*                    | 0.21 (-0.52, 0.95)           | 0.571   | -0.10 (34, 0.15)             | 0.439   |  |
| ICU Admission                      | 1.46 (0.90, 2.37)            | 0.124   | 1.18 (1.01, 1.36)            | 0.033   |  |
| DVT / PE                           | Ø                            | Ø       | 0.84 (0.39, 1.81)            | 0.653   |  |
| Acute Renal Failure                | 0.91 (0.57, 1.44)            | 0.680   | 1.00 (0.88, 1.15)            | 0.943   |  |
| Hysterectomy                       | 0.95 (0.67, 1.35)            | 0.758   | 1.08 (0.97, 1.20)            | 0.169   |  |
| Respiratory Composite <sup>†</sup> | 1.26 (0.87, 1.83)            | 0.226   | 1.16 (1.04, 1.31)            | 0.011   |  |
| Mortality                          | Ø                            | Ø       | 0.85 (0.54, 1.32)            | 0.466   |  |

\*Beta-coefficient in place of odds ratio

Ø Insufficient data for model

<sup>+</sup> Respiratory Composite: mechanical ventilation, acute respiratory distress syndrome,

transfusion-related acute lung injury, transfusion-associated circulatory overload

#### **Coagulation Parameters**

| New INR ≥ 1.5 (n, %) | No FFP°  | Underbalanced | Balanced  |
|----------------------|----------|---------------|-----------|
| 4-7 RBCs             | 11 (7.3) | 54 (13.8)     | 37 (18.0) |
| 8-11 RBCs            | 5 (29.4) | 21 (27.6)     | 8 (14.5)  |
| 12-23 RBCs           | 4 (50.0) | 18 (45.0)     | 11 (36.7) |
| 24+ RBCs             |          | 7 (87.5)      | 1 (100.0) |

° A subset of 'Underbalanced' which received no FFP transfusions

Cases with measured intraoperative INR. Known preoperative INR ≥ 1.5 excluded





# Factors and Outcomes Associated with Blood Product Transfusion Ratios During Massive Postpartum Hemorrhage



Michael J Furdyna, MD; Samuel Justice, PhD; Mahyar Heydarpour, PhD; Shubhangi Singh, MBBS; John J Kowalczyk, MD; Sharon C Reale, MD

Brigham and Women's Hospital, Boston, MA

## Conclusions



There is significant variability in transfusion management of massive PPH, even when adjusting for multiple patient, case, and management factors



Transfusion volume (hemorrhage severity) may play a bigger role in developing new-onset coagulopathy than transfusion ratios do



There is evidence of potential harm with higher FFP ratios; each additional FFP per 4 RBCs increased odds of respiratory complications by ~16% and ICU admission by ~18%

Targeted approaches to transfusion ratios in PPH are needed as resuscitation escalates in order to avoid harm

Unanswered: What is the optimal product ratio, and when does it matter?

