

Haley Mullins, BS¹, Soobin Song, BS¹, Shreya Vinjamuri, MD³, Rachel Achu-Lopes, MD², Erin Dienes, PhD², Mark C. Norris, MD²

Boston University Chobanian & Avedisian School of Medicine, ² Department of Anesthesiology, Boston Medical Center,

Department of Anesthesiology, University of Miami/ Jackson Health System

BACKGROUND

- Systemic evaluations suggest that the optimal Programmed Intermittent Bolus (PIEB) regimen is 10 mL boluses given every 40 minutes ¹⁻³
- Increased bulk flow rate may provide more effective pain relief by improving the distribution of anesthetic ⁴⁻⁶
- Our preliminary data showed that increasing bolus volume and dosing interval—without changing total anesthetic dose—did not reduce provider interventions but may improve anesthesia quality, as fewer required concentration increases

AIM

PIEB settings at Boston Medical Center:

(i)

40 mL/h

↑ analgesia quality?

measured by need for provider interventions

METHODS

PIEB

0.0625% bupivacaine with 2 µg/mL fentanyl

Patient- Administered **Boluses**

Group A

(Before Intervention)

Mar 2023 Jun 2023

8 mL 15 min 32 mL

Group B (Intervention 1)

Sep 2023 Apr 2024 Sep 2024

10 mL 40 min 40 mL/h

10 mL 20 min 30 mL

Group C

(Interventions 1+2)

> Jul 2024 Nov 2024

Laboring **Patients**

Urban Safety Net Hospital

> Mar 2023 -Nov 2024

Technique

Per Anesthesiologist Preference

- Epidural
- Dural Puncture Epidural (DPE)
- Combined Spinal Epidural (CSE)

Analgesia Induction

- Intrathecal or **Epidural Bupivacaine**
- Epidural Fentanyl
- Epidural Lidocaine with Epinephrine

Data Extracted from Electronic Medical Records

Demographics

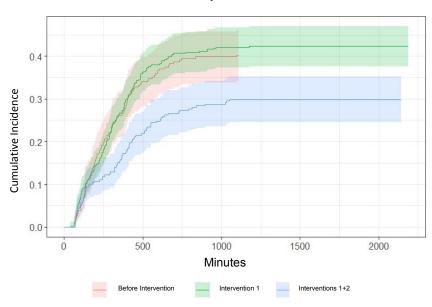
Provider Interventions

- Rescue Bolus - C-Section - Increased Concentration
- Epidural Replacement

Time from Induction to Intervention or Delivery

Primary Outcome

Time to:


- Rescue Bolus - C-Section
 - Delivery

RESULTS

Cumulative Incidence Function of Rescue BolusFor Each Treatment Group with 95% Confidence Band

	Group A N=256	Group B N=423	Group C N=278	p-value
Outcomes, n (%)				
No Provider Intervention	153 (59.8)	244 (57.7)	193 (69.4)	0.004
Neck/Back Pain	0* (0.0)	8* (1.9)	9 (3.2)	0.112*
Epidural Replacement	15 (5.9)	26 (6.1)	21 (7.6)	0.684
↑ Infusion Concentration	17 (6.6)	8 (1.9)	6 (2.2)	0.002
Cumulative Incidence Function, % (95% CI)				
Decemb Polyment 9 Hours	33% (95% CI:	35% (95% CI:	22% (95% CI:	0.002
Rescue Bolus at 8 Hours	. , .,	[30%, 39%])	[17%, 27%])	0.002
-:	Hazards	(O = 0)	. O.D.	
Fine-Gray Hazards Model	Ratio	(95%	o CI)	p-value
Group A (8 mL q 30 min @ 40 mL/h)	-	-	•	-
Group B (10 mL q 40min @ 40 mL/h)	1.06	(0.83,	,	0.6
Group C (10 mL q 40min @ 250mL/h) *Data Not Available for June 2023 and Septen	0.68 nber 2023	(0.51,	0.90)	0.008

- There is a **statistically significant difference in probability of needing a rescue bolus** among the three groups (p = 0.002), **specifically in Group C (Interventions 1+2)** compared to Group A (Before Intervention) and Group B (Intervention 1) (p=0.008).
- Changing bolus volume to 10 mL q 40 min had a significant effect on need to increase concentration, but potentially negative effect on need to rescue bolus.

CONCLUSION

- At our institution, increasing bolus volume and prolonging dosing interval (10 mL every 40 minutes) with increased bulk flow rate (250 mL/h) significantly decreased the need for provider intervention, as measured by incidence of rescue bolus.
- Increasing bolus volume and prolonging dosing interval **improved the quality of analgesia**, as measured by **need to increase concentration**, but potentially had a **negative effect on need to rescue bolus**.
- Next step is to study the isolated effect of increased bulk flow rate (250 mL/h) with original bolus volume and dosing interval (8 mL every 30 minutes).