

Anesthetic Management for Cesarean Delivery in a Patient with Congenital Truncus Arteriosus and Severe Valvular Disease

<u>Khader Zimmo</u>, Dan Szoke Department of Anesthesiology, Western University, London, ON, Canada

Introduction

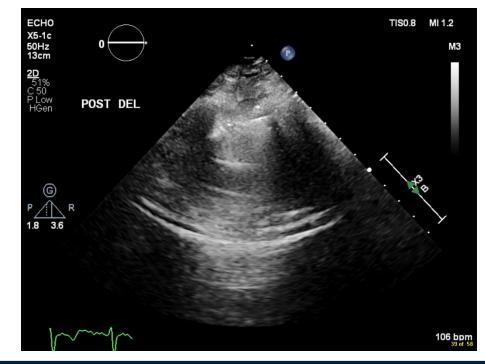
- With advancements in medicine and surgery, more women with congenital heart disease reach childbearing age. Pregnancy poses significant challenges due to physiological changes conflicting with cardiac physiology
- Corrected truncus arteriosus (TA) in pregnancy is extremely rare, with an incidence of <1 in 10,000 pregnancies
- Balancing the physiological changes of pregnancy with underlying cardiac physiology poses significant challenges

Case Presentation

ID 24 F G3P1 - Repaired TA with complex valvular lesions

Echo Severe stenosis of RV-PA conduit (PG 56 mmHg)
Conceptually her pulmonary valve
Severe regurgitation of pulmonary graft
RV dilation with low systolic function (RVSP 85-90)
Severe tricuspid regurgitation


Moderate to severe truncal valve regurgitation Conceptually her aortic valve LVEF was 45-50% Presented in labour at 35+5 GA


L3-4 epidural placed: 2% Lidocaine 15 mL + 100 mcg Fentanyl BP 134/88, HR 83 bpm, SpO2 96% on room air, CVP of 14

Post Delivery:

- SOB and ↑ FiO2, 2LNP -> 8LNP over next 10 minutes.
- \downarrow BP and narrow pulse pressure (80's/60's), CVP 16-20
- TTE distended RV + septal flattening/D-shaped
- Tx: Epinephrine infusion + Lasix 40 + 40 mg IV
 Gradual improvement over next 30 minutes

Take Home Points

- Balancing Hemodynamic goals of cardiac lesions with the physiologic changes of pregnancy and delivery
- Conflicts
 - Competing goals for valvular lesions present
 - Autotransfusion after delivery
 - Sympathetic stimulation of surgery
- Carbetocin dose
 - _o Khan et al. (2014): ED90 of 14.8 mcg for elective cesarean delivery, suggesting that lower doses can be effective.
 - Anandakrishnan et al. (2013): Doses as low as 20–50 mcg demonstrated similar efficacy with fewer hemodynamic effects.
- Importance of interdisciplinary approach and risk stratification with use of mWHO classification for pregnant woman with heart disease
- 1. Koziol KJ et al. Cyanotic Congenital Heart Disease in Pregnancy: A Review of Pathophysiology and Management. Cardiol Rev. 2024;32(4):348-355.
- 2. Regitz-Zagrosek V et al. 2018 ESC Guidelines for the management of cardiovascular diseases during pregnancy. Eur Heart J. 2018;39(34):3165-3241.
- 3. Khan M et al. Carbetocin at elective Cesarean delivery: a sequential allocation trial to determine the minimum effective dose. Can J Anaesth. 2014 Mar;61(3):242-8.
- Anandakrishnan S et al. Carbetocin at elective Cesarean delivery: a randomized controlled trial to determine the effective dose, part 2. Can J Anaesth. 2013 Nov;60(11):1054-60.

Condition	Preload	Afterload	Contractility	Heart Rate	Rhythm	Other Considerations
Pulmonary Stenosis	\uparrow/\leftrightarrow	\leftrightarrow PVR	\leftrightarrow	\downarrow	SR	Avoid increased RV pressures/PVR
Pulmonary Regurgitation	\uparrow / \leftrightarrow	\downarrow / \leftrightarrow PVR	\leftrightarrow	↑	SR	minimize PVR
Aortic Regurgitation	↑	↓ SVR	\uparrow / \leftrightarrow	↑	SR	
Right Ventricular Dysfunction	\uparrow/\leftrightarrow	↓ PVR	^/↔	↔ (Slightly ↑)	SR	Avoid increase in PVR and high PEEP Optimize RV preload but avoid overload
Tricuspid Regurgitation	\uparrow/\leftrightarrow	↓ PVR	\leftrightarrow	\leftrightarrow	SR	Maintain adequate preload for forward flow