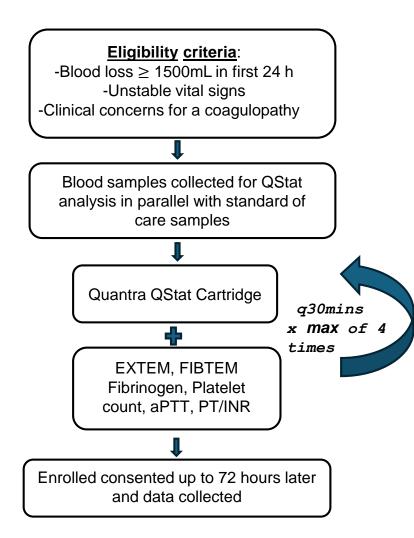
EVALUATING THE ABILITY OF FIBRINOGEN, ROTEM AND SEER-DERIVED PARAMETERS TO PREDICT SEVERE OBSTETRIC HEMORRHAGE

Marc Ghabach, MD, Jerome Federspiel, MD, PhD, Mary Yurashevich, MD, MPH, Terrence Allen, MBBS, MHS, FRCA

Background

- Prediction of severe obstetric hemorrhage allows timely interventions to reduce maternal morbidity.
- Fibrinogen and FIBTEM have been proposed as biomarkers to predict severe maternal hemorrhage.
- Sonic Estimation of Elasticity via Resonance (SEER) Sonorheometry is a novel VET modality, utilized by the cartridge-based Quantra® Hemostasis Analyzer that measures clot physical properties during coagulation.
- SEER-derived parameter fibrinogen contribution to clot stiffness FCS is highly correlated with fibrinogen and FIBTEM.
- FCS may have a role in predicting hemorrhage related outcomes in obstetrics


Study Aim

• To evaluate the ability of the FCS, Fibtem A10 and Fibrinogen measured early in a hemorrhage to predict severe obstetric hemorrhage in an obstetric hemorrhage cohort.

Figure 1. Multichannel QStat cartridge used for estimating the fibrinogen contribution to clot stiffness

STUDY DESIGN AND METHODS

- Sample size: 50 patients
- Area under the ROC (AUROC) analysis was used to determine the ability of Fibrinogen, FIBTEM A10 and FCS measured at study enrollment to predict severe obstetric hemorrhage.
- Optimal cut points (Youden's Index) were estimated for each parameter for the relevant outcomes.
- Severe obstetric hemorrhage outcomes defined as:
 - QBL >2.5 L
 - Transfusion of \geq 4 units of blood products
 - Severe maternal morbidity (SMM)
 - Transfusion of \geq 4 units blood products,
 - Hysterectomy for hemorrhage control
 - ICU admission

RESULTS

Transfusion of Blood Products				Quantitative Blood Loss (QBL)					
	<4 units (n=41)	≥ 4 units (n=8)	AUROC (95% CI)	Optimal cut point		QBL≤2.5 (n=41)	QBL>2.5 (n=8)	AUROC (95% CI)	Optimal cut point
Fibrinogen (mg/dL)	378 (107)	270 (63)	0.831 (0.646, 0.966)	312	Fibrinogen (mg/dL)	373 (110)	283 (50)	0.772 (0.581, 0.921)	315
FIBTEM A10 (mm)	19 (5)	14 (5)	0.768 (0.547, 0.933)	16	FIBTEM A10 (mm)	18 (5)	16 (3)	0.656 (0.485, 0.820)	19
FCS (hPa)	4.0 (1.7)	2.8 (0.9)	0.736 (0.551, 0.896)	3.9	FCS (hPa)	4.0 (1.7)	3.0 (1.1)	0.697 (0.467, 0.874)	3.3

Table 1

Table 2

Severe Maternal Morbidity (SMM)										
	No SMM (n=37)	SMM (n=13)	AUROC (95% CI)	Optimal cut point						
Fibrinogen (mg/dL)	374 (104)	319 (98)	0.658 (0.449, 0.845)	259						
FIBTEM A10 (mm)	18 (5)	16 (4)	0.618 (0.437, 0.784)	18						
FCS (hPa)	3.9 (1.6)	3.7 (1.8)	0.547 (0.360, 0.724)	3.9						

Table 3

Data are mean (sd), hPa (HectoPascal), CI- confidence interval

CONCLUSION

- All 3 parameters had good to moderate performance for predicting QBL>2.5 L and transfusion of ≥ 4 units of blood products.
- All 3 parameters performed poorly for predicting SMM.
- Fibrinogen was the best performing parameter for predicting all 3 outcomes.
- FCS and FIBTEM A10 had similar performance for predicting all 3 outcomes.
- The SEER derived FCS may have a role in predicting severe hemorrhage making it a viable alternative to fibrinogen and ROTEM.

Funding: This study was funded by Hemosonics, LLC, Durham, NC, USA.