A PILOT STUDY EVALUATING THE CORRELATION OF SEER SONORHEOMETRY WITH

ROTEM IN OBSTETRIC HEMORRHAGE

Marc Ghabach, MD, Jerome Federspiel, MD, PhD, Mary Yurashevich, MD, MPH, Terrence Allen, MBBS, MHS, FRCA

Background

- Sonic Estimation of Elasticity via Resonance (SEER) Sonorheometry is a novel VET modality, utilized by the cartridge-based Quantra® Hemostasis Analyzer.
- Limited evaluation in obstetric hemorrhage patients

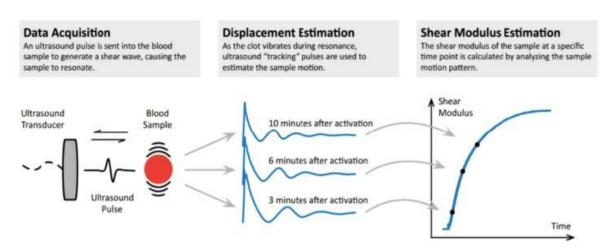
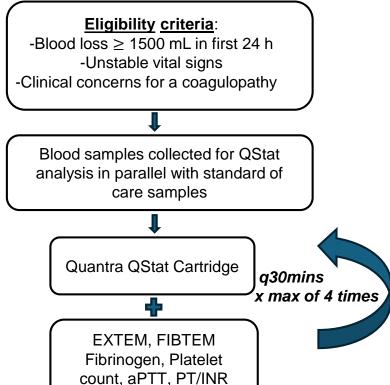


Figure 1. Principle of SEER Sonorheometry


Study Aim

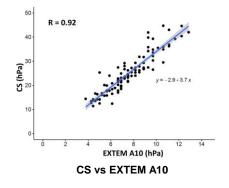
To determine the correlation of SEER-based Quantra®
 QStat cartridge parameters with those obtained from the
 ROTEM® delta and other lab-based coagulation assays
 used as standard of care in obstetric hemorrhage at our
 facility.

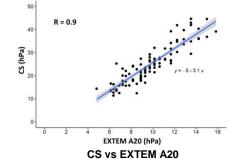
Figure 2. Dial output screen of the Quantra Hemostatic Analyzer

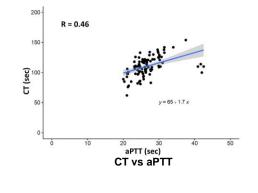
STUDY DESIGN AND METHODS

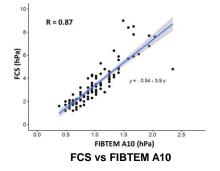
Enrolled consented up to 72 hours later and data collected

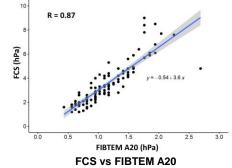
- Projected sample size goal: 50 patients
- Data collected
 - Demographic
 - Obstetric comorbidities
 - Transfusion data
 - hemorrhage-related outcome
- Pearson's correlation to assess the correlation between:
 - Clot Stiffness (CS) vs EXTEM A10 and A20
 - Fibrinogen Contribution to Clot Stiffness (FCS) vs FIBTEM A10 and A20
 - Platelet Contribution to Clot Stiffness (PCS) vs PLATEM=EXTEM A20-FIBTEM A20
 - PCS vs Platelet count
 - Clot time (CT) vs aPTT
- Clinical concordance analysis to assess agreement between Extem ML and Qstat Clot Stability to Lysis (CSL) (fibrinolysis parameters)

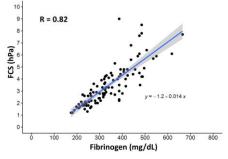

Results


Demographic data (n=50)			
Age (years)	33 (30, 37)		
BMI (kg/m²)	32 (29, 39)		
Race			
White	28 (56%)		
Black	18 (36%)		
Asian	4 (8%)		
Gestational Age (weeks)	37 (36, 39)		
Prior pregnancies	1 (1,3)		
Prior Births	0 (0,1)		
Cesarean Section	72%		
Labor augmentation	28 (56%)		
Multiple Gestation	3 (6%)		
Gestational Diabetes	7 (14%)		
Preterm Births	13 (26%)		
Preeclampsia	12 (24%)		
Chorioamnionitis	4 (8%q)		


Hemorrhage management (n=50)			
2nd line uterotonic administered	38 (76%)		
Balloon tamponade	16 (32%)		
Uterine compression sutures	5 (10%)		
Hysterectomy	3 (6%)		
Uterine artery ligation	1 (2%)		
ICU admission	3 (6%)		


Hemorrhage etiology (n=50)			
Uterine Atony	26 (52%)		
Placenta Accreta Spectrum	4 (8%)		
Surgical Bleeding	16 (32%)		
Coagulopathy	1 (2%)		
Genital Tract Laceration	8 (16%)		
Retained Placenta	5 (10%)		
Unknown	1 (2%)		


Transfusion Data (n=50)			
Quantitative blood loss (mL) (Q1,Q3)	1828 <i>(1566,</i> 2325)		
Transfused PRBCs	29 (58%)		
Transfused Plasma	1 (2%)		
Transfused Cryoprecipitate	7 (14%)		
Transfused Platelets	1 (2%)		
Tranexamic acid administered	49 (98%)		
Received fibrinogen concentrate	5 (10%)		



BTEM A20 FCS vs Fibrinogen

8 = 0.87 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	50 45 R = 0.76 40 35 (G 30 20 15 10
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 PLATEM A20 (hPa) PCS vs PLATEM A20	5- 0- 0 50 100 150 200 250 300 Platelet Count (x1000/uL) PCS vs Platelet Count

Overall agreement 84.3%		EXTEM ML>15%	
		Positive	Negative
Qstat CSL>5%	Positive	0	0
	Negative	11	59

Clinical concordance between Qstat CSL and EXTEM for detecting hyperfibrinolysis

Conclusion

- In obstetric hemorrhage patients the QStat SEER derived parameters of clot stiffness demonstrated strong correlation with
 - Analogous ROTEM derived parameters of clot strength
 - Fibrinogen levels
 - Platelet count
- QStat SEER derived CT was only weakly correlated with aPTT
- The Qstat cartridge is a viable alternative viscoelastic testing device in managing obstetric hemorrhage patients

Funding: This study was funded by Hemosonics, LLC, Durham, NC, USA.